Switch to: References

Add citations

You must login to add citations.
  1. Relational Semantics of the Lambek Calculus Extended with Classical Propositional Logic.Michael Kaminski & Nissim Francez - 2014 - Studia Logica 102 (3):479-497.
    We show that the relational semantics of the Lambek calculus, both nonassociative and associative, is also sound and complete for its extension with classical propositional logic. Then, using filtrations, we obtain the finite model property for the nonassociative Lambek calculus extended with classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Natural Deduction Bottom Up.Ernst Zimmermann - 2021 - Journal of Logic, Language and Information 30 (3):601-631.
    The paper introduces a new type of rules into Natural Deduction, elimination rules by composition. Elimination rules by composition replace usual elimination rules in the style of disjunction elimination and give a more direct treatment of additive disjunction, multiplicative conjunction, existence quantifier and possibility modality. Elimination rules by composition have an enormous impact on proof-structures of deductions: they do not produce segments, deduction trees remain binary branching, there is no vacuous discharge, there is only few need of permutations. This new (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Lambek Calculus Extended with Intuitionistic Propositional Logic.Michael Kaminski & Nissim Francez - 2016 - Studia Logica 104 (5):1051-1082.
    We present sound and complete semantics and a sequent calculus for the Lambek calculus extended with intuitionistic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations