Abstract
With the proliferation of sophisticated cyber threats, traditional malware detection techniques are becoming inadequate to ensure robust cybersecurity. This study explores the integration of deep learning (DL) techniques into malware detection systems to enhance their accuracy, scalability, and adaptability. By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage.