Mathematical Modality: An Investigation of Set Theoretic Contingency

Abstract

An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. In the higher-order framework I show that contingency about the width of the set-theoretic universe refutes two orthodoxies concerning the structure of modal reality: the view that the broadest necessity has a logic of S5, and the `Leibniz biconditionals' stating that what is possible, in the broadest sense of possible, is what is true in some possible world. Nonetheless, I argue that the underlying picture of modal set-theory is coherent and has natural models.

Author's Profile

Andrew Bacon
University of Southern California

Analytics

Added to PP
2022-12-13

Downloads
257 (#42,858)

6 months
86 (#17,907)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?