Support for Geometric Pooling

Review of Symbolic Logic 16 (1):298-337 (2023)
  Copy   BIBTEX

Abstract

Supra-Bayesianism is the Bayesian response to learning the opinions of others. Probability pooling constitutes an alternative response. One natural question is whether there are cases where probability pooling gives the supra-Bayesian result. This has been called the problem of Bayes-compatibility for pooling functions. It is known that in a common prior setting, under standard assumptions, linear pooling cannot be nontrivially Bayes-compatible. We show by contrast that geometric pooling can be nontrivially Bayes-compatible. Indeed, we show that, under certain assumptions, geometric and Bayes-compatible pooling are equivalent. Granting supra-Bayesianism its usual normative status, one upshot of our study is thus that, in a certain class of epistemic contexts, geometric pooling enjoys a normative advantage over linear pooling as a social learning mechanism. We discuss the philosophical ramifications of this advantage, which we show to be robust to variations in our statement of the Bayes-compatibility problem.

Author Profiles

Rush T. Stewart
University of Rochester
Jean Baccelli
University of Oxford

Analytics

Added to PP
2020-10-09

Downloads
770 (#25,973)

6 months
158 (#22,919)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?