Abstract
This paper provides a new approach to a family of outstanding logical and semantical puzzles, the most famous being Frege's puzzle. The three main reductionist theories of propositions (the possible-worlds theory, the propositional-function theory, the propositional-complex theory) are shown to be vulnerable to Benacerraf-style problems, difficulties involving modality, and other problems. The nonreductionist algebraic theory avoids these problems and allows us to identify the elusive nondescriptive, non-metalinguistic, necessary propositions responsible for the indicated family of puzzles. The algebraic approach is also used to defend antiexistentialism against existentialist prejudices. The paper closes with a suggestion about how this theory of content might enable us to give purely semantic (as opposed to pragmatic) solutions to the puzzles based on a novel formulation of the principle of compositionality