Abstract
Two semantic paradoxes, the Liar and Curry’s paradox, are analysed using a newly developed conception of procedural semantics (semantics according to which the truth of propositions is determined algorithmically), whose main characteristic is its departure from methodological realism. Rather than determining pre-existing facts, procedures are constitutive of them. Of this semantics, two versions are considered: closed (where the halting of procedures is presumed) and open (without this presumption). To this end, a procedural approach to deductive reasoning is developed, based on the idea of simulation. As is shown, closed semantics supports classical logic, but cannot in any straightforward way accommodate the concept of truth. In open semantics, where paradoxical propositions naturally ‘belong’, they cease to be paradoxical; yet, it is concluded that the natural choice—for logicians and common people alike—is to stick to closed semantics, pragmatically circumventing problematic utterances.