Abstract
Quantum mechanics, like any physical theory, comes equipped with many metaphysical assumptions and implications. The line between metaphysics and physics is often blurry, but as a rough guide, one can think of a theory’s metaphysics as those foundational assumptions made in its interpretation that are not usually directly tested in experiment. In classical mechanics some examples of possible metaphysical assumptions are the claims that forces are real, that inertial mass is primitive, and that space is substantival. The distinctive feature of these claims is that they are all rather far removed from ordinary tests of the theory. Newton defended all three of the above claims at one time or other, whereas Mach attacked each one; however, both scientists agreed on enough of the formalism and its connection to experiment to predict (e.g.) the same periods for given pendulums. What they disagreed about were the ingredients necessary to use classical mechanics to explain and understand the world.