On the Infinite in Mereology with Plural Quantification

Review of Symbolic Logic 4 (1):54-62 (2011)
Download Edit this record How to cite View on PhilPapers
Abstract
In Lewis reconstructs set theory using mereology and plural quantification (MPQ). In his recontruction he assumes from the beginning that there is an infinite plurality of atoms, whose size is equivalent to that of the set theoretical universe. Since this assumption is far beyond the basic axioms of mereology, it might seem that MPQ do not play any role in order to guarantee the existence of a large infinity of objects. However, we intend to demonstrate that mereology and plural quantification are, in some ways, particularly relevant to a certain conception of the infinite. More precisely, though the principles of mereology and plural quantification do not guarantee the existence of an infinite number of objects, nevertheless, once the existence of any infinite object is admitted, they are able to assure the existence of an uncountable infinity of objects. So, ifMPQ were parts of logic, the implausible consequence would follow that, given a countable infinity of individuals, logic would be able to guarantee an uncountable infinity of objects
Reprint years
2011
PhilPapers/Archive ID
CAROTI-2
Upload history
Archival date: 2017-11-22
View other versions
Added to PP index
2012-05-05

Total views
376 ( #12,920 of 53,768 )

Recent downloads (6 months)
22 ( #29,227 of 53,768 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.