Semantic Information Measure with Two Types of Probability for Falsification and Confirmation

Abstract

Logical Probability (LP) is strictly distinguished from Statistical Probability (SP). To measure semantic information or confirm hypotheses, we need to use sampling distribution (conditional SP function) to test or confirm fuzzy truth function (conditional LP function). The Semantic Information Measure (SIM) proposed is compatible with Shannon’s information theory and Fisher’s likelihood method. It can ensure that the less the LP of a predicate is and the larger the true value of the proposition is, the more information there is. So the SIM can be used as Popper's information criterion for falsification or test. The SIM also allows us to optimize the true-value of counterexamples or degrees of disbelief in a hypothesis to get the optimized degree of belief, i. e. Degree of Confirmation (DOC). To explain confirmation, this paper 1) provides the calculation method of the DOC of universal hypotheses; 2) discusses how to resolve Raven Paradox with new DOC and its increment; 3) derives the DOC of rapid HIV tests: DOC of “+” =1-(1-specificity)/sensitivity, which is similar to Likelihood Ratio (=sensitivity/(1-specificity)) but has the upper limit 1; 4) discusses negative DOC for excessive affirmations, wrong hypotheses, or lies; and 5) discusses the DOC of general hypotheses with GPS as example.

Author's Profile

Analytics

Added to PP
2017-04-08

Downloads
344 (#63,311)

6 months
132 (#33,566)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?