aristotle's demonstrative logic

History and Philosophy of Logic 30 (1):1-20 (2009)
Download Edit this record How to cite View on PhilPapers
Abstract
Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle's two-volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence conception of demonstration meant to apply to all demonstrations. According to him, a demonstration, which normally proves a conclusion not previously known to be true, is an extended argumentation beginning with premises known to be truths and containing a chain of reasoning showing by deductively evident steps that its conclusion is a consequence of its premises. In particular, a demonstration is a deduction whose premises are known to be true. Aristotle's general theory of demonstration required a prior general theory of deduction presented in the Prior Analytics. His general immediate-deduction-chaining conception of deduction was meant to apply to all deductions. According to him, any deduction that is not immediately evident is an extended argumentation that involves a chaining of intermediate immediately evident steps that shows its final conclusion to follow logically from its premises. To illustrate his general theory of deduction, he presented an ingeniously simple and mathematically precise special case traditionally known as the categorical syllogistic
ISBN(s)
PhilPapers/Archive ID
CORADL
Upload history
Archival date: 2014-12-06
View other versions
Added to PP index
2009-04-14

Total views
613 ( #7,716 of 56,919 )

Recent downloads (6 months)
44 ( #17,855 of 56,919 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.