Notes on a semantic analysis of variable binding term operators

Logique Et Analyse 55:644-657 (1971)
  Copy   BIBTEX

Abstract

A variable binding term operator (vbto) is a non-logical constant, say v, which combines with a variable y and a formula F containing y free to form a term (vy:F) whose free variables are exact ly those of F, excluding y. Kalish-Montague proposed using vbtos to formalize definite descriptions, set abstracts {x: F}, minimalization in recursive function theory, etc. However, they gave no sematics for vbtos. Hatcher gave a semantics but one that has flaws. We give a correct semantic analysis of vbtos. We also give axioms for using them in deductions. And we conjecture strong completeness for the deductions with respect to the semantics. The conjecture was later proved independently by the authors and by Newton da Costa. The expression (vy:F) is called a variable bound term (vbt). In case F has only y free, (vy:F) has the syntactic propreties of an individual constant; and under a suitable interpretation of the language vy:F) denotes an individual. By a semantic analysis of vbtos we mean a proposal for amending the standard notions of (1) "an interpretation o f a first -order language" and (2) " the denotation of a term under an interpretation and an assignment", such that (1') an interpretation o f a first -order language associates a set-theoretic structure with each vbto and (2') under any interpretation and assignment each vb t denotes an individual.

Author's Profile

John Corcoran
PhD: Johns Hopkins University; Last affiliation: University at Buffalo

Analytics

Added to PP
2014-02-11

Downloads
270 (#32,700)

6 months
20 (#50,794)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?