Fine on the Possibility of Vagueness

In Federico L. G. Faroldi & Frederik Van De Putte (eds.), Outstanding Contributions to Logic: Kit Fine. Springer (forthcoming)
  Copy   BIBTEX

Abstract

Fine (2017) proposes a new logic of vagueness, CL, that promises to provide both a solution to the sorites paradox and a way to avoid the impossibility result from Fine (2008). The present paper presents a challenge to his new theory of vagueness. I argue that the possibility theorem stated in Fine (2017), as well as his solution to the sorites paradox, fail in certain reasonable extensions of the language of CL. More specifically, I show that if we extend the language with any negation operator that obeys reductio ad absurdum, we can prove a new impossibility result that makes the kind of indeterminacy that Fine takes to be a hallmark of vagueness impossible. I show that such negation operators can be conservatively added to CL and examine some of the philosophical consequences of this result. Moreover, I demonstrate that we can define a particular negation operator that behaves exactly like intuitionistic negation in a natural and unobjectionable propositionally quantified extension of CL. Since intuitionistic negation obeys reductio, the new impossibility result holds in this propositionally quantified extension of CL. In addition, the sorites paradox resurfaces for the new negation.

Author's Profile

Andreas Ditter
University College London

Analytics

Added to PP
2020-08-22

Downloads
357 (#62,241)

6 months
79 (#72,036)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?