Abstract
Agriculture contributes a significant amount to the economy of India due to the dependence on
humanbeings for their survival. The main obstacle to food security is population expansion leading to rising demand for
food. Farmers must produce more on the same land to boost the supply. Through crop yield prediction, technology can
assist farmers in producing more. This paper’s primary goal is to predict crop yield utilizing the variables of rainfall,
crop, meteorological conditions, area, production, and yield that have posed a serious threat to the long-term viability of
agriculture. Crop yield prediction is a decision-support tool that uses machine learning and deep learning that can be used
to make decisions about which crops to produce and what to do in the crop’s growing season. It can decide which crops
to produce and what to do in the crop’s growing season. Regardless of the distracting environment, machine learning and
deep learning algorithms are utilized in crop selection to reduce agricultural yield output losses. To estimate the
agricultural yield, machine learning techniques: decision tree, random forest, and XGBoost regression; deep learning
techniques- convolutional neural network and long-short term memory network have been used. Accuracy, root mean
square error, mean square error, mean absolute error, standard deviation, and losses are compared. Other machine
learning and deep learning methods fall short compared to the random forest and convolutional neural network. The
random forest has a maximum accuracy of 98.96%, mean absolute error of 1.97, root mean square error of 2.45, and
standard deviation of 1.23. The convolutional neural network has been evaluated with a minimum loss of 0.00060.
Consequently, a model is developed that, compared to other algorithms, predicts the yield quite well. The findings are
then analyzed using the root mean square error metric to understand better how the model’s errors compare to those of
the other methods.