Abstract
A common kind of explanation in cognitive neuroscience might be called functiontheoretic:
with some target cognitive capacity in view, the theorist hypothesizes that
the system computes a well-defined function (in the mathematical sense) and explains
how computing this function constitutes (in the system’s normal environment) the
exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’
approach in philosophy of science have argued that a model of a cognitive capacity is
explanatory only to the extent that it reveals the causal structure of the mechanism
underlying the capacity. If they are right, then a cognitive model that resists a transparent
mapping to known neural mechanisms fails to be explanatory. I argue that a functiontheoretic
characterization of a cognitive capacity can be genuinely explanatory even
absent an account of how the capacity is realized in neural hardware.