Abstract
A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field operator φ(x,t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. We prove using this novel approach that the quantum field theory with Hamiltonian P(φ)_4 exists and that the corresponding C^* algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We prove that the λ(φ^2n )_4,n≥2 quantum field theory models are Lorentz covariant.