Abstract
The vacuum energy density of free scalar quantum field phgr in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such the Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations 〈phgr2〉 has a singular behavior on a Rindler horizon. Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski's account doesn't violate of the Einstein equivalence principle