Conjunction, disjunction and iterated conditioning of conditional events

In R. Kruse (ed.), Advances in Intelligent Systems and Computing. Springer (2013)
Download Edit this record How to cite View on PhilPapers
Abstract
Starting from a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of coherence. We give a representation of the conjoined conditional and we show that this new object is a conditional random quantity, whose set of possible values normally contains the probabilities assessed for the two conditional events. We examine some cases of logical dependencies, where the conjunction is a conditional event; moreover, we give the lower and upper bounds on the conjunction. We also examine an apparent paradox concerning stochastic independence which can actually be explained in terms of uncorrelation. We briefly introduce the notions of disjunction and iterated conditioning and we show that the usual probabilistic properties still hold.
PhilPapers/Archive ID
GILCDA-2
Upload history
Archival date: 2012-12-19
View other versions
Added to PP index
2012-12-20

Total views
607 ( #7,207 of 54,448 )

Recent downloads (6 months)
80 ( #7,349 of 54,448 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.