Abstract
In recent years, a number of theorists have claimed that beliefs about probability are transparent. To believe probably p is simply to have a high credence that p. In this paper, I prove a variety of triviality results for theses like the above. I show that such claims are inconsistent with the thesis that probabilistic modal sentences have propositions or sets of worlds as their meaning. Then I consider the extent to which a dynamic semantics for probabilistic modals can capture theses connecting belief, certainty, credence, and probability. I show that although a dynamic semantics for probabilistic modals does allow one to validate such theses, it can only do so at a cost. I prove that such theses can only be valid if probabilistic modals do not satisfy the axioms of the probability calculus.