Face in the Game: Using Facial Action Units to Track Expertise in Competitive Video Game Play

In IEEE Transactions on Games (Conference on Games 2022, Beijing, China). Acm (2022)
  Copy   BIBTEX

Abstract

In this study, we extracted facial action units (AUs) data during a Hearthstone tournament to investigate behavioural differences between expert, intermediate, and novice players. Our aim was to obtain insights into the nature of expertise and how it may be tracked using non-invasive methods such as AUs. These insights may shed light on the endogenous responses in the player and at the same time may provide information to the opponents during a competition. Our results show that player expertise may be characterised by specific patterns in facial expressions. More specifically, AU17 (chin raiser), AU25 (lips apart), and AU26 (jaws drop) intensity responses during gameplay may vary according to players' expertise. Such results were obtained by training a random forest classifier to test whether we can use these three AUs alone to accurately detect players' expertise. The classifier reached 0.75 accuracy on 5-fold cross-validation, after balancing the class weights, and 0.85 after having applied the Synthetic Minority Over-sampling Technique (SMOTE) function. These results suggest that AUs can be effectively used to discriminate different levels of expertise in competitive video game players.

Author Profiles

Analytics

Added to PP
2022-07-06

Downloads
78 (#63,282)

6 months
53 (#24,783)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?