Abstract
The Spohnian paradigm of ranking functions is in many respects like an order-of-magnitude reverse of subjective probability theory. Unlike probabilities, however, ranking functions are only indirectly—via a pointwise ranking function on the underlying set of possibilities W —defined on a field of propositions A over W. This research note shows under which conditions ranking functions on a field of propositions A over W and rankings on a language L are induced by pointwise ranking functions on W and the set of models for L, ModL, respectively.