Abstract
We defend hylomorphism against Maegan Fairchild’s purported proof of its inconsistency. We provide a deduction of a contradiction from SH+, which is the combination of “simple hylomorphism” and an innocuous premise. We show that the deduction, reminiscent of Russell’s Paradox, is proof-theoretically valid in classical higher-order logic and invokes an impredicatively defined property. We provide a proof that SH+ is nevertheless consistent in a free higher-order logic. It is shown that the unrestricted comprehension principle of property abstraction on which the purported proof of inconsistency relies is analogous to naïve unrestricted set-theoretic comprehension. We conclude that logic imposes a restriction on property comprehension, a restriction that is satisfied by the ramified theory of types. By extension, our observations constitute defenses of theories that are structurally similar to SH+, such as the theory of singular propositions, against similar purported disproofs.