Abstract
This paper focuses on the Enkratic principle of rationality, according to which rationality requires that if an agent sincerely and with conviction believes she ought to X, then X-ing is a goal in her plan. We analyze the logical structure of Enkrasia and its implications for deontic logic. To do so, we elaborate on the distinction between basic and derived oughts, and provide a multi-modal neighborhood logic with three characteristic operators: a non-normal operator for basic oughts, a non-normal operator for goals in plans, and a normal operator for derived oughts. We prove two completeness theorems for the resulting logic, and provide a dynamic extension of the logic by means of product updates. We illustrate how this setting informs deontic logic by considering issues related to the filtering of inconsistent oughts, the restricted validity of deontic closure, and the stability of oughts and goals under dynamics.