Abstract
Abstract: In this study, we explore the challenge of identifying and preventing diseases in apple trees, which is a popular activity
but can be difficult due to the susceptibility of these trees to various diseases. To address this challenge, we propose the use of
Convolutional Neural Networks, which have proven effective in automatically detecting plant diseases. To validate our approach,
we use images of apple leaves, including Apple Rot Leaves, Leaf Blotch, Healthy Leaves, and Scab Leaves collected from Kaggle
which is part from the Plant Village dataset. We generate a comprehensive training dataset using techniques such as image filtering,
compression, and generation. Our model achieves impressive accuracy scores for all classes, with an overall accuracy of 99.93%
on a dataset of 10,000 labeled images .