Abstract
Many biological investigations are organized around a small group of species, often referred to as ‘model organisms’, such as the fruit fly Drosophila melanogaster. The terms ‘model’ and ‘modelling’ also occur in biology in association with mathematical and mechanistic theorizing, as in the Lotka–Volterra model of predator-prey dynamics. What is the relation between theoretical models and model organisms? Are these models in the same sense? We offer an account on which the two practices are shown to have different epistemic characters. Theoretical modelling is grounded in explicit and known analogies between model and target. By contrast, inferences from model organisms are empirical extrapolations. Often such extrapolation is based on shared ancestry, sometimes in conjunction with other empirical information. One implication is that such inferences are unique to biology, whereas theoretical models are common across many disciplines. We close by discussing the diversity of uses to which model organisms are put, suggesting how these relate to our overall account. 1 Introduction2 Volterra and Theoretical Modelling3 Drosophila as a Model Organism4 Generalizing from Work on Model Organisms5 Phylogenetic Inference and Model Organisms6 Further Roles of Model Organisms6.1 Preparative experimentation6.2 Model organisms as paradigms6.3 Model organisms as theoretical models6.4 Inspiration for engineers6.5 Anchoring a research community7 Conclusion