Abstract
I present a version of Kit Fine's stratified semantics for the logic RWQ and define a natural family of related structures called RW hyperdoctrines. After proving that RWQ is sound with respect to RW hyperdoctrines, we show how to construct, for each stratified model, a hyperdoctrine that verifies precisely the same sentences. Completeness of RWQ for hyperdoctrinal semantics then follows from completeness for stratified semantics, which is proved in an appendix. By examining the base category of RW hyperdoctrines, we find reason to be worried about the ontology of stratified models.