Abstract
Metacontrast is a visual illusion in which the visibility of a target stimulus is virtually lost when immediately followed by a nonoverlapping mask stimulus. For a colored target, metacontrast is color-selective, with target visibility markedly reduced when the mask and target are the same color, but only slightly reduced when the colors differ. This study investigated neural correlates of color-selective metacontrast for cone-opponent red and green stimuli in the human V1, V2, and V3 using functional magnetic resonance imaging. Neural activity was suppressed when the target was rendered less visible by the same-colored mask, and the suppression was localized in the cortical region retinotopically representing the target, correlating with the perceptual topography of visibility/invisibility rather than the physical topography of the stimulus. Retinotopy-based group analysis found that activity suppression was statistically significant for V2 and V3 and that its localization to the target region was statistically significant for V2. These results suggest that retinotopic color representations in early visual areas, especially in V2, are closely linked to the visibility of color.