Abstract
Accelerated computing leverages specialized hardware and software techniques to optimize the performance of computationally intensive tasks, offering significant speed-ups in scientific, engineering, and data-driven fields. This paper presents a comprehensive study examining the role of accelerated computing in enhancing processing capabilities and reducing execution times in diverse applications. Using a custom-designed experimental framework, we evaluated different methodologies for parallelization, GPU acceleration, and CPU-GPU coordination. The aim was to assess how various factors, such as data size, computational complexity, and task concurrency, impact processing efficiency.