Abstract
The truth-functional hypothesis states that indicative conditional sentences and the material implication have the same truth conditions. Haze (2011) has rejected this hypothesis. He claims that a self-referential conditional, coupled with a plausible assumption about its truth-values and the assumption that the truth-functional hypothesis is true, lead to a liar’s paradox. Given that neither the self-referential conditional nor the assumption about its truth-values are problematic, the culprit of the paradox must be the truth-functional hypothesis. Therefore, we should reject it. In this paper I argue that, contrary to what Haze thinks, the truth-functional hypothesis is not to blame. In fact, no liar’s paradox emerges when the truth-functional hypothesis is true; it emerges only if it is false.