Abstract
The purpose of this essay is to study the extent in which the semantics for different logical systems can be represented game theoretically. I will begin by considering different definitions of what it means to gamify a semantics, and show completeness and limitative results. In particular, I will argue that under a proper definition of gamification, all finitely algebraizable logics can be gamified, as well as some infinitely algebraizable ones (like Ćukasiewicz) and some non-algebraizable (like intuitionistic and van Fraassen supervaluation logic).