Abstract
The paper contains some algebraic results on several varieties of algebras having an (interlaced) bilattice reduct. Some of these algebras have already been studied in the literature (for instance bilattices with conflation, introduced by M. Fit- ting), while others arose from the algebraic study of O. Arieli and A. Avron’s bilattice logics developed in the third author’s PhD dissertation. We extend the representation theorem for bounded interlaced bilattices (proved, among others, by A. Avron) to un- bounded bilattices and prove analogous representation theorems for the other classes of bilattices considered. We use these results to establish categorical equivalences between these structures and well-known varieties of lattices.