Abstract
This article proposes a new interpretation of mutual information. We examine three extant interpretations of MI by reduction in doubt, by reduction in uncertainty, and by divergence. We argue that the first two are inconsistent with the epistemic value of information assumed in many applications of MI: the greater is the amount of information we acquire, the better is our epistemic position, other things being equal. The third interpretation is consistent with EVI, but it is faced with the problem of measure sensitivity and fails to justify the use of MI in giving definitive answers to questions of information. We propose a fourth interpretation of MI by reduction in expected inaccuracy, where inaccuracy is measured by a strictly proper monotonic scoring rule. It is shown that the answers to questions of information given by MI are definitive whenever this interpretation is appropriate, and that it is appropriate in a wide range of applications with epistemic implications. _1_ Introduction _2_ Formal Analyses of the Three Interpretations _2.1_ Reduction in doubt _2.2_ Reduction in uncertainty _2.3_ Divergence _3_ Inconsistency with Epistemic Value of Information _4_ Problem of Measure Sensitivity _5_ Reduction in Expected Inaccuracy _6_ Resolution of the Problem of Measure Sensitivity _6.1_ Alternative measures of inaccuracy _6.2_ Resolution by strict propriety _6.3_ Range of applications _7_ Global Scoring Rules _8_ Conclusion