Abstract
On Zeno Beach there are infinitely many grains of sand, each half the size of the last. Supposing Aristotle denied the possibility of Zeno Beach, did he have a good argument for the denial? Three arguments, each of ancient origin, are examined: the beach would be infinitely large; the beach would be impossible to walk across; the beach would contain a part equal to the whole, whereas parts must be lesser. It is attempted to show that none of these arguments was Aristotle’s. Indeed, perhaps Aristotle’s finitism applied to magnitude only, not plurality.