Abstract
Abstract: Pistachio nuts are a valuable source of nutrition and are widely cultivated for commercial purposes. The accurate
classification of different pistachio varieties is important for quality control and market analysis. In this study, we propose a new
model for the classification of different pistachio varieties using Convolutional Neural Networks (CNNs). We collected a dataset of
pistachio images form Kaggle depository with two varieties (Kirmizi and Siirt). The images were then preprocessed and used to
train a CNN model based on VGG16. We evaluated the performance of the VGG16 on a held-out test set. Our results show that the
CNN-based model VGG16 performed very well in terms of accuracy and efficiency. The VGG16 model was able to accurately
classify different pistachio varieties with an accuracy of over 99.91%. Additionally, the VGG16 was able to generalize well to new
and unseen data, demonstrating its ability to handle variability in the pistachio images. This study highlights the potential of CNNs
for the classification of different pistachio varieties, and has important implications for the pistachio industry. The results suggest
that this approach can be used to improve the quality control process and enhance market analysis.