Abstract
Augment the propositional language with two modal operators: □ and ■. Define ⧫ to be the dual of ■, i.e. ⧫=¬■¬. Whenever (X) is of the form φ → ψ, let (X⧫) be φ→⧫ψ . (X⧫) can be thought of as the modally qualified counterpart of (X)—for instance, under the metaphysical interpretation of ⧫, where (X) says φ implies ψ, (X⧫) says φ implies possibly ψ. This paper shows that for various interesting instances of (X), fairly weak assumptions suffice for (X⧫) to imply (X)—so, the modally qualified principle is as strong as its unqualified counterpart. These results have surprising and interesting implications for issues spanning many areas of philosophy.