Machine learning in scientific grant review: algorithmically predicting project efficiency in high energy physics

European Journal for Philosophy of Science 12 (3):1-21 (2022)
  Copy   BIBTEX

Abstract

As more objections have been raised against grant peer-review for being costly and time-consuming, the legitimate question arises whether machine learning algorithms could help assess the epistemic efficiency of the proposed projects. As a case study, we investigated whether project efficiency in high energy physics can be algorithmically predicted based on the data from the proposal. To analyze the potential of algorithmic prediction in HEP, we conducted a study on data about the structure and outcomes of HEP experiments with the goal of predicting their efficiency. In the first step, we assessed the project efficiency using Data Envelopment Analysis of 67 experiments conducted in the HEP laboratory Fermilab. In the second step, we employed predictive algorithms to detect which team structures maximize the epistemic performance of an expert group. For this purpose, we used the efficiency scores obtained by DEA and applied predictive algorithms – lasso and ridge linear regression, neural network, and gradient boosted trees – on them. The results of the predictive analyses show moderately high accuracy, indicating that they can be beneficial as one of the steps in grant review. Still, their applicability in practice should be approached with caution. Some of the limitations of the algorithmic approach are the unreliability of citation patterns, unobservable variables that influence scientific success, and the potential predictability of the model.

Author's Profile

Vlasta Sikimić
Eindhoven University of Technology

Analytics

Added to PP
2022-07-23

Downloads
415 (#50,422)

6 months
185 (#21,391)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?