Serial Endosymbiosis Theory: From biology to astronomy and back to the origin of life

Biosystems (forthcoming)
  Copy   BIBTEX

Abstract

Serial Endosymbiosis Theory, or SET, was conceived and developed by Lynn Margulis, to explain the greatest discontinuity in the history of life, the origin of eukaryotic cells. Some predictions of SET, namely the origin of mitochondria and chloroplasts, withstood the test of the most recent evidence from a variety of disciplines including phylogenetics, biochemistry, and cell biology. Even though some other predictions fared less well, SET remains a seminal theory in biology. In this paper, I focus on two aspects of SET. First, using the concept of "universal symbiogenesis”, developed by Freeman Dyson to search for commonalities in astronomy and biology, I propose that SET can be extended beyond eukaryogenesis. The extension refers to the possibility that even prokaryotic organisms, themselves subject to the process of symbiogenesis in SET, could have emerged symbiotically. Second, I contrast a recent “viral eukaryogenesis” hypothesis, according to which the nucleus evolved from a complex DNA virus, with a view closer to SET, according to which the nucleus evolved through the interplay of the archaeal host, the eubacterial symbiont, and a non-LTR transposon, or telomerase. Viruses joined in later, through the process of viral endogenization, to shape eukaryotic chromosomes in the process of karyotype evolution. These two proposals based on SET are a testament to its longevity as a scientific theory.

Author's Profile

Predrag Slijepcevic
Brunel University

Analytics

Added to PP
2021-01-15

Downloads
363 (#63,433)

6 months
101 (#53,355)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?