The usefulness of a checklist approach-based confirmation scheme in identifying unreliable COVID-19-related health information: a case study in Japan

Humanities and Social Sciences Communications 9:270 (2022)
  Copy   BIBTEX

Abstract

Consumers are increasingly able to easily access health information online about food products. However, consumers have difficulty identifying reliable health information from diverse sources along with information about the coronavirus disease (COVID-19) pandemic because the inundation of information (both true and false) overwhelm consumers. We investigated the usefulness of a checklist confirmation scheme for identifying unreliable COVID-19-related health information. Data were collected from June 30–July 1, 2021. First, we measured 700 participants’ baseline health literacy levels by having them read unreliable health information about the efficacy of green tea intake in preventing COVID-19 based on the results of animal experimentation. Second, participants read an explanation with a five-step flowchart of how to identify reliable health information. Thereafter, we remeasured participants’ health literacy levels. To identify the factors hindering the effect of the confirmation scheme, a logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Overall, 77.9% (293/376) of those with low health literacy levels at baseline still had low literacy after the intervention. The factor that hindered the confirmation scheme’s usefulness was benefit perceptions of food ingredients (OR: 0.493; 95% CI: 0.252–0.966). Consumers with higher benefit perceptions of a target product faced more difficulties using the confirmation scheme effectively. Therefore, the most effective strategies involve filtering information at the organizational level rather than the individual level, which should help consumers correctly identify misinformation concerning food and health and promote accurate decision-making.

Analytics

Added to PP
2022-08-16

Downloads
233 (#81,897)

6 months
88 (#63,288)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?