Defeasible Conditionalization

Journal of Philosophical Logic 43 (2-3):283-302 (2014)
Download Edit this record How to cite View on PhilPapers
The applicability of Bayesian conditionalization in setting one’s posterior probability for a proposition, α, is limited to cases where the value of a corresponding prior probability, PPRI(α|∧E), is available, where ∧E represents one’s complete body of evidence. In order to extend probability updating to cases where the prior probabilities needed for Bayesian conditionalization are unavailable, I introduce an inference schema, defeasible conditionalization, which allows one to update one’s personal probability in a proposition by conditioning on a proposition that represents a proper subset of one’s complete body of evidence. While defeasible conditionalization has wider applicability than standard Bayesian conditionalization (since it may be used when the value of a relevant prior probability, PPRI(α|∧E), is unavailable), there are circumstances under which some instances of defeasible conditionalization are unreasonable. To address this difficulty, I outline the conditions under which instances of defeasible conditionalization are defeated. To conclude the article, I suggest that the prescriptions of direct inference and statistical induction can be encoded within the proposed system of probability updating, by the selection of intuitively reasonable prior probabilities
Reprint years
PhilPapers/Archive ID
Upload history
Archival date: 2015-11-21
View other versions
Added to PP index

Total views
266 ( #22,884 of 2,440,191 )

Recent downloads (6 months)
6 ( #54,641 of 2,440,191 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.