Abstract
Arrhenius’s impossibility theorems purport to demonstrate that no population axiology can satisfy each of a small number of intuitively compelling adequacy conditions. However, it has recently been pointed out that each theorem depends on a dubious assumption: Finite Fine-Grainedness. This assumption states that there exists a finite sequence of slight welfare differences between any two welfare levels. Denying Finite Fine-Grainedness makes room for a lexical population axiology which satisfies all of the compelling adequacy conditions in each theorem. Therefore, Arrhenius’s theorems fail to prove that there is no satisfactory population axiology.
In this paper, I argue that Arrhenius’s theorems can be repurposed. Since all of our population-affecting actions have a non-zero probability of bringing about more than one distinct population, it is population prospect axiologies that are of practical relevance, and amended versions of Arrhenius’s theorems demonstrate that there is no satisfactory population prospect axiology. These impossibility theorems do not depend on Finite Fine-Grainedness, so lexical views do not escape them.