Abstract
It has been argued that if the rigidity condition is satisfied, a rational agent operating with uncertain evidence should update her subjective probabilities by Jeffrey conditionalization or else a series of bets resulting in a sure loss could be made against her. We show, however, that even if the rigidity condition is satisfied, it is not always safe to update probability distributions by JC because there exist such sequences of non-misleading uncertain observations where it may be foreseen that an agent who updates her subjective probabilities by JC will end up nearly certain that a false hypothesis is true. We analyze the features of JC that lead to this problem, specify the conditions in which it arises and respond to potential objections.