Rethinking quasispecies theory: From fittest type to cooperative consortia

Download Edit this record How to cite View on PhilPapers
Recent investigations surprisingly indicate that single RNA "stem-loops" operate solely by chemical laws that act without selective forces, and in contrast, self-ligated consortia of RNA stem-loops operate by biological selection. To understand consortial RNA selection, the concept of single quasi-species and its mutant spectra as drivers of RNA variation and evolution is rethought here. Instead, we evaluate the current RNA world scenario in which consortia of cooperating RNA stem-loops are the basic players. We thus redefine quasispecies as RNA quasispecies consortia and argue that it has essential behavioral motifs that are relevant to the inherent variation, evolution and diversity in biology. We propose that qs-c is an especially innovative force. We apply qs-c thinking to RNA stem-loops and evaluate how it yields altered bulges and loops in the stem-loop regions, not as errors, but as a natural capability to generate diversity. This basic competence-not error-opens a variety of combinatorial possibilities which may alter and create new biological interactions, identities and newly emerged self identity functions. Thus RNA stem-loops typically operate as cooperative modules, like members of social groups. From such qs-c of stem-loop groups we can trace a variety of RNA secondary structures such as ribozymes, viroids, viruses, mobile genetic elements as abundant infection derived agents that provide the stem-loop societies of small and long non-coding RNAs.
No keywords specified (fix it)
PhilPapers/Archive ID
Upload history
Archival date: 2016-03-28
View other versions
Added to PP index

Total views
200 ( #32,108 of 65,622 )

Recent downloads (6 months)
14 ( #46,297 of 65,622 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.