New foundations for imperative logic I: Logical connectives, consistency, and quantifiers

Noûs 42 (4):529-572 (2008)
  Copy   BIBTEX

Abstract

Imperatives cannot be true or false, so they are shunned by logicians. And yet imperatives can be combined by logical connectives: "kiss me and hug me" is the conjunction of "kiss me" with "hug me". This example may suggest that declarative and imperative logic are isomorphic: just as the conjunction of two declaratives is true exactly if both conjuncts are true, the conjunction of two imperatives is satisfied exactly if both conjuncts are satisfied—what more is there to say? Much more, I argue. "If you love me, kiss me", a conditional imperative, mixes a declarative antecedent ("you love me") with an imperative consequent ("kiss me"); it is satisfied if you love and kiss me, violated if you love but don't kiss me, and avoided if you don't love me. So we need a logic of three -valued imperatives which mixes declaratives with imperatives. I develop such a logic.

Author's Profile

Peter Vranas
University of Wisconsin, Madison

Analytics

Added to PP
2009-01-28

Downloads
1,208 (#12,578)

6 months
130 (#35,648)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?