Time-dependent symmetries: the link between gauge symmetries and indeterminism

In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 163--173 (2002)
Download Edit this record How to cite View on PhilPapers
Abstract
Mathematically, gauge theories are extraordinarily rich --- so rich, in fact, that it can become all too easy to lose track of the connections between results, and become lost in a mass of beautiful theorems and properties: indeterminism, constraints, Noether identities, local and global symmetries, and so on. One purpose of this short article is to provide some sort of a guide through the mathematics, to the conceptual core of what is actually going on. Its focus is on the Lagrangian, variational-problem description of classical mechanics, from which the link between gauge symmetry and the apparent violation of determinism is easy to understand; only towards the end will the Hamiltonian description be considered. The other purpose is to warn against adopting too unified a perspective on gauge theories. It will be argued that the meaning of the gauge freedom in a theory like general relativity is (at least from the Lagrangian viewpoint) significantly different from its meaning in theories like electromagnetism. The Hamiltonian framework blurs this distinction, and orthodox methods of quantization obliterate it; this may, in fact, be genuine progress, but it is dangerous to be guided by mathematics into conflating two conceptually distinct notions without appreciating the physical consequences.
Keywords
No keywords specified (fix it)
PhilPapers/Archive ID
WALTST-3
Upload history
Archival date: 2015-11-21
View other versions
Added to PP index
2011-11-09

Total views
429 ( #10,227 of 51,672 )

Recent downloads (6 months)
34 ( #17,238 of 51,672 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.