Modal science

Canadian Journal of Philosophy 46 (4-5):453-492 (2016)
  Copy   BIBTEX


This paper explains and defends the idea that metaphysical necessity is the strongest kind of objective necessity. Plausible closure conditions on the family of objective modalities are shown to entail that the logic of metaphysical necessity is S5. Evidence is provided that some objective modalities are studied in the natural sciences. In particular, the modal assumptions implicit in physical applications of dynamical systems theory are made explicit by using such systems to define models of a modal temporal logic. Those assumptions arguably include some necessitist principles. Too often, philosophers have discussed ‘metaphysical’ modality — possibility, contingency, necessity — in isolation. Yet metaphysical modality is just a special case of a broad range of modalities, which we may call ‘objective’ by contrast with epistemic and doxastic modalities, and indeed deontic and teleological ones (compare the distinction between objective probabilities and epistemic or subjective probabilities). Thus metaphysical possibility, physical possibility and immediate practical possibility are all types of objective possibility. We should study the metaphysics and epistemology of metaphysical modality as part of a broader study of the metaphysics and epistemology of the objective modalities, on pain of radical misunderstanding. Since objective modalities are in general open to, and receive, natural scientific investigation, we should not treat the metaphysics and epistemology of metaphysical modality in isolation from the metaphysics and epistemology of the natural sciences. In what follows, Section 1 gives a preliminary sketch of metaphysical modality and its place in the general category of objective modality. Section 2 reviews some familiar forms of scepticism about metaphysical modality in that light. Later sections explore a few of the many ways in which natural science deals with questions of objective modality, including questions of quantified modal logic.

Author's Profile

Timothy Williamson
University of Oxford


Added to PP

2,297 (#3,603)

6 months
369 (#5,184)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?