What Is the Validity Domain of Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Geometrodynamics

100 Years of Chronogeometrodynamics: The Status of the Einstein's Theory of Gravitation in Its Centennial Year (2016)
Download Edit this record How to cite View on PhilPapers
The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions.
PhilPapers/Archive ID
Revision history
Archival date: 2019-01-28
View upload history
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Added to PP index

Total views
128 ( #29,155 of 50,193 )

Recent downloads (6 months)
35 ( #17,838 of 50,193 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks to external links.