Abstract
Sora from Open AI has shown exceptional performance, yet it faces scrutiny over whether its technological prowess equates to an authentic comprehension of reality. Critics contend that it lacks a foundational grasp of the world, a deficiency V-JEPA from Meta aims to amend with its joint embedding approach. This debate is vital for steering the future direction of Artificial General Intelligence(AGI). We enrich this debate by developing a theory of productive imagination that generates a coherent world model based on Kantian philosophy. We identify three indispensable components in the coherent world model that enable genuine world understanding: latent representations of isolated objects, an a priori law of change across space and time, and Kantian categories. Our analysis reveals that Sora is limited because of its oversight of the a priori law of change and Kantian categories, flaws that are not rectifiable through scaling up the training. V-JEPA learns the context-dependent aspect of the a priori law of change. Yet it fails to fully comprehend Kantian categories and incorporate experience, leading us to conclude that neither system currently achieves a comprehensive world understanding. Nevertheless, each system has developed components essential to advancing an integrated AI productive imagination-understanding engine. Finally, we propose an innovative training framework for an AI productive imagination-understanding engine, centered around a joint embedding system designed to transform disordered perceptual input into a structured, coherent world model. Our philosophical analysis pinpoints critical challenges within contemporary video AI technologies and a pathway toward achieving an AI system capable of genuine world understanding, such that it can be applied for reasoning and planning in the future.