Switch to: Citations

Add references

You must login to add references.
  1. The Proof-Theoretic Analysis of Transfinitely Iterated Quasi Least Fixed Points.Dieter Probst - 2006 - Journal of Symbolic Logic 71 (3):721 - 746.
    The starting point of this article is an old question asked by Feferman in his paper on Hancock's conjecture [6] about the strength of ${\rm ID}_{1}^{\ast}$. This theory is obtained from the well-known theory ID₁ by restricting fixed point induction to formulas that contain fixed point constants only positively. The techniques used to perform the proof-theoretic analysis of ${\rm ID}_{1}^{\ast}$ also permit to analyze its transfinitely iterated variants ${\rm ID}_{\alpha}^{\ast}$. Thus, we eventually know that $|\widehat{{\rm ID}}_{\alpha}|=|{\rm ID}_{\alpha}^{\ast}|$.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • An Axiomatic Approach to Self-Referential Truth.Harvey Friedman & Michael Sheard - 1987 - Annals of Pure and Applied Logic 33 (1):1--21.
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • (1 other version)Some theories with positive induction of ordinal strength ϕω.Gerhard Jäger & Thomas Strahm - 1996 - Journal of Symbolic Logic 61 (3):818-842.
    This paper deals with: (i) the theory ID # 1 which results from $\widehat{\mathrm{ID}}_1$ by restricting induction on the natural numbers to formulas which are positive in the fixed point constants, (ii) the theory BON(μ) plus various forms of positive induction, and (iii) a subtheory of Peano arithmetic with ordinals in which induction on the natural numbers is restricted to formulas which are Σ in the ordinals. We show that these systems have proof-theoretic strength φω 0.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An ordinal analysis for theories of self-referential truth.Graham Emil Leigh & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):213-247.
    The first attempt at a systematic approach to axiomatic theories of truth was undertaken by Friedman and Sheard (Ann Pure Appl Log 33:1–21, 1987). There twelve principles consisting of axioms, axiom schemata and rules of inference, each embodying a reasonable property of truth were isolated for study. Working with a base theory of truth conservative over PA, Friedman and Sheard raised the following questions. Which subsets of the Optional Axioms are consistent over the base theory? What are the proof-theoretic strengths (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • On the relation between choice and comprehension principles in second order arithmetic.Andrea Cantini - 1986 - Journal of Symbolic Logic 51 (2):360-373.
    We give a new elementary proof of the comparison theorem relating $\sum^1_{n + 1}-\mathrm{AC}\uparrow$ and $\Pi^1_n -\mathrm{CA}\uparrow$ ; the proof does not use Skolem theories. By the same method we prove: a) $\sum^1_{n + 1}-\mathrm{DC} \uparrow \equiv (\Pi^1_n -CA)_{ , for suitable classes of sentences; b) $\sum^1_{n+1}-DC \uparrow$ proves the consistency of (Π 1 n -CA) ω k, for finite k, and hence is stronger than $\sum^1_{n+1}-AC \uparrow$ . a) and b) answer a question of Feferman and Sieg.
    Download  
     
    Export citation  
     
    Bookmark   12 citations