Switch to: Citations

Add references

You must login to add references.
  1. Quantum statistical physics.Gérard Emch - 2006 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Amsterdam and Boston: Elsevier. pp. 1075--1182.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Horizon Entropy.Ted Jacobson & Renaud Parentani - 2003 - Foundations of Physics 33 (2):323-348.
    Although the laws of thermodynamics are well established for black hole horizons, much less has been said in the literature to support the extension of these laws to more general settings such as an asymptotic de Sitter horizon or a Rindler horizon (the event horizon of an asymptotic uniformly accelerated observer). In the present paper we review the results that have been previously established and argue that the laws of black hole thermodynamics, as well as their underlying statistical mechanical content, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • More ado about nothing.Michael Redhead - 1995 - Foundations of Physics 25 (1):123-137.
    In this paper questions about vacuum fluctuations in local measurements, and the correlations between such fluctuations, are discussed. It is shown that maximal correlations always exist between suitably chosen local projection operators associated with spacelike separated regions of space-time, however far apart these regions may be. The connection of this result with the well-known Fregenhagen bound showing exponential decay of correlations with distance is explained, and the relevance of the discussion to the question “What do particle detectors detect?” is addressed.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Holism and nonseparability in physics.Richard Healey - 2008 - Stanford Encyclopedia of Philosophy.
    It has sometimes been suggested that quantum phenomena exhibit a characteristic holism or nonseparability, and that this distinguishes quantum from classical physics. One puzzling quantum phenomenon arises when one performs measurements of spin or polarization on certain separated quantum systems. The results of these measurements exhibit patterns of statistical correlation that resist traditional causal explanation. Some have held that it is possible to understand these patterns as instances or consequences of quantum holism or nonseparability. Just what holism and nonseparability are (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Holism, physical theories and quantum mechanics.Michael Patrick Seevinck - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):693-712.
    Motivated by the question what it is that makes quantum mechanics a holistic theory, I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Entanglement and Open Systems in Algebraic Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):1-31.
    Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on an experimenter's ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Quantum probability theory.Miklós Rédei & Stephen Jeffrey Summers - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):390-417.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Part and whole in quantum mechanics.Tim Maudlin - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 46--60.
    Download  
     
    Export citation  
     
    Bookmark   69 citations