Switch to: Citations

Add references

You must login to add references.
  1. Can quantum probability provide a new direction for cognitive modeling?Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share the (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Concepts and Their Dynamics: A Quantum‐Theoretic Modeling of Human Thought.Diederik Aerts, Liane Gabora & Sandro Sozzo - 2013 - Topics in Cognitive Science 5 (4):737-772.
    We analyze different aspects of our quantum modeling approach of human concepts and, more specifically, focus on the quantum effects of contextuality, interference, entanglement, and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Rational approximations to rational models: Alternative algorithms for category learning.Adam N. Sanborn, Thomas L. Griffiths & Daniel J. Navarro - 2010 - Psychological Review 117 (4):1144-1167.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Decision theory with prospect interference and entanglement.V. I. Yukalov & D. Sornette - 2011 - Theory and Decision 70 (3):283-328.
    We present a novel variant of decision making based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intentions, which allows us to describe a variety of interesting fallacies and anomalies that have been reported to particularize the decision making of real human beings. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. We demonstrate how the violation of the Savage’s sure-thing principle, known (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations