Switch to: Citations

Add references

You must login to add references.
  1. Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Π 1 0 classes, L R degrees and Turing degrees.George Barmpalias, Andrew E. M. Lewis & Frank Stephan - 2008 - Annals of Pure and Applied Logic 156 (1):21-38.
    We say that A≤LRB if every B-random set is A-random with respect to Martin–Löf randomness. We study this relation and its interactions with Turing reducibility, classes, hyperimmunity and other recursion theoretic notions.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Classical Recursion Theory.Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Relativizing chaitin's halting probability.Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller & André Nies - 2005 - Journal of Mathematical Logic 5 (02):167-192.
    As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations